485号 XingMei Rd 485,Shanghai,China
热甩尾仪根据D"amour/Smith原理和方法,测量大鼠、小鼠尾巴部受红外热刺激时的痛觉阈值。
实验步骤及方法:
· 该仪器使用可调强度的红外光源,红外光通过一抛物镜面反射聚焦在实验动物的尾巴上;
· 操作人员将实验动物置于仪器上,把动物的尾巴放在红外光源处,接受热辐射刺激;
· 当动物感觉到疼痛时,尾巴会左右甩动或者轻敲台面,内置传感器会立刻检测到尾巴的活动,停止计时和关闭光源;
· 仪器自动记录反应时间和光源强;
· 数据可通过U盘或USB数据线导出到电脑;
· 该型号的设备在世界上使用和验证超过3000次,积累了数十年的经验;
型号:37560
主要特点:
· 尾部轻拍可自动记录或手动评分;
· 自动化程度高,避免人为因素引起的误差;
· 触摸屏控制,操控方便,显示直观;
· 可独立工作,也可连接电脑使用;
· 测试平台平整,表面无突出和遮挡部件;
· 可选配红外热辐射校准仪用于校准红外光源;
· 多种单位可转换;
· 该仪器适合大鼠和小鼠的测试;
· 有大鼠、小鼠两种不同的固定器可供选择;
正在进行大鼠甩尾测试
仪器的操作
· 主机内包括红外光源、传感器、微控制器;
· 自动检测尾巴的活动情况,自动计时,延迟时间会被自动记录;
· 可选配倾斜的老鼠固定器,将老鼠尾巴保持在 45 度向上的位置。
可选配的小鼠固定器
控制面板
· 数据格式通用化,可使用其他软件进行统计;
· 带储存功能,用于实验数据的保存;
· 可联网,通过远程网络对实验方案进行编辑;
校准辐射计
· 用来对辐射强度进行校准;校准辐射计货号我37300;
· 确保两个或多个装置提供完全相同强度的热伤害性刺激(辐射单位:mW/cm2)
· 测量红外光的能量的绝对值(1s持续时间内的1mW对应1mJ)
替换灯泡
(Halogen"Bellaphot",Mod.64607 OSRAM,8V-50W)
主要参数
电源
通用 85-264 VAC, 50-60Hz
控制
软键和脚踏板
数据读取
多功能的图像显示
打印
微型热敏打印机(需另外购买)
红外强度
01-99可调
反应时间
液晶屏显示,分辨率为0.1s
数据传输
USB接口
校准
红外热辐射计(需另外购买)
工作温度
10-40°C
重量
4Kg
尺寸
43x22x10cm
标准配置
37360
甩尾仪主机
37215-303
脚踏板
E-AU 041
存储卡,包含以下
37370-302
安装说明书
52050-10
数据采集软件包
52010-323
USB 数据线
E-HR 002
E-US 063-1
电池 M4T32-BRI2SH1
额外选配
37360-325
小鼠束缚器 (25mm I.D.)
37360-330
小鼠束缚器(30mm I.D.)
37300
红外热辐射计
57145
微型打印机
参考文献:
1.Weldon C, Ji T, Nguyen MT, et al. Nanoscale Bupivacaine Formulations To Enhance the Duration and Safety of Intravenous Regional Anesthesia. ACS Nano. 2019;13(1):18-25. doi:10.1021/acsnano.8b05408(IF=17.1)
2.Guo W, Fan S, Xiao D, et al. A Brainstem reticulotegmental neural ensemble drives acoustic startle reflexes. Nat Commun. 2021;12(1):6403. Published 2021 Nov 4. doi:10.1038/s41467-021-26723-9(IF=16.6)
3.Guida F, Boccella S, Belardo C, et al. Altered gut microbiota and endocannabinoid system tone in vitamin D deficiency-mediated chronic pain. Brain Behav Immun. 2020;85:128-141. doi:10.1016/j.bbi.2019.04.006(IF=15.1)
4.Huang F, Chen X, Jiang X, et al. Betaine ameliorates prenatal valproic-acid-induced autism-like behavioral abnormalities in mice by promoting homocysteine metabolism. Psychiatry Clin Neurosci. 2019;73(6):317-322. doi:10.1111/pcn.12833(IF=11.9)
5.Liu Q, Su LY, Sun C, et al. Melatonin alleviates morphine analgesic tolerance in mice by decreasing NLRP3 inflammasome activation. Redox Biol. 2020;34:101560. doi:10.1016/j.redox.2020.101560(IF=11.4)
6.Caputi FF, Rullo L, Acquas E, Ciccocioppo R, Candeletti S, Romualdi P. Evidence of a PPARγ-mediated mechanism in the ability of Withania somnifera to attenuate tolerance to the antinociceptive effects of morphine. Pharmacol Res. 2019;139:422-430. doi:10.1016/j.phrs.2018.11.033(IF=9.3)
7.Stone AE, Scheuermann SE, Haile CN, et al. Fentanyl conjugate vaccine by injected or mucosal delivery with dmLT or LTA1 adjuvants implicates IgA in protection from drug challenge. NPJ Vaccines. 2021;6(1):69. Published 2021 May 13. doi:10.1038/s41541-021-00329-0(IF=9.2)
8.Elhenawy AA, Al-Harbi LM, El-Gazzar MA, et al. Naproxenylamino acid derivatives: Design, synthesis, docking, QSAR and anti-inflammatory and analgesic activity. Biomed Pharmacother. 2019;116:109024. doi:10.1016/j.biopha.2019.109024IF=7.5)
9.Hu ZJ, Han W, Cao CQ, Mao-Ying QL, Mi WL, Wang YQ. Peripheral Leptin Signaling Mediates Formalin-Induced Nociception. Neurosci Bull. 2018;34(2):321-329. doi:10.1007/s12264-017-0194-2(IF=5.6)
10.Abdelkader NF, Ibrahim SM, Moustafa PE, Elbaset MA. Inosine mitigated diabetic peripheral neuropathy via modulating GLO1/AGEs/RAGE/NF-κB/Nrf2 and TGF-β/PKC/TRPV1 signaling pathways. Biomed Pharmacother. 2022;145:112395. doi:10.1016/j.biopha.2021.112395(IF=7.5)
11.Marabese I, Boccella S, Iannotta M, et al. Metabotropic glutamate receptor subtype 7 in the dorsal striatum oppositely modulates pain in sham and neuropathic rats.Neuropharmacology. 2018;135:86-99. doi:10.1016/j.neuropharm.2018.03.003(IF=4.7)
12.Suzuki T, Sawada T, Kawai K, Ishihara Y. Pharmacological profile of TAN-452, a novel peripherally acting opioid receptor antagonist for the treatment of opioid-inducedbowel syndromes. Life Sci. 2018;215:246-252. doi:10.1016/j.lfs.2018.07.028(IF=6.1)
13.De Caro C, Raucci F, Saviano A, et al. Pharmacological and molecular docking assessment of cryptotanshinone as natural-derived analgesic compound. Biomed Pharmacother. 2020;126:110042. doi:10.1016/j.biopha.2020.110042(IF=7.5)
14.Palazzo E, Boccella S, Marabese I, et al. Homo-AMPA in the periaqueductal grey modulates pain and rostral ventromedial medulla activity in diabetic neuropathic mice. Neuropharmacology. 2022;212:109047. doi:10.1016/j.neuropharm.2022.109047(IF=4.7)
15.Weber L, Wang X, Ren R, et al. The Development of a Macromolecular Analgesic for Arthritic Pain. Mol Pharm. 2019;16(3):1234-1244. doi:10.1021/acs.molpharmaceut.8b01197(IF=4.9)
16.Sasaguri T, Taguchi T, Murata Y, et al. Interleukin-27 controls basal pain threshold in physiological and pathological conditions. Sci Rep. 2018;8(1):11022. Published 2018 Jul 23. doi:10.1038/s41598-018-29398-3(IF=4.6)
17.Komatsu A, Miyano K, Nakayama D, et al. Novel Opioid Analgesics for the Development of Transdermal Opioid Patches That Possess Morphine-Like Pharmacological Profiles Rather Than Fentanyl: Possible Opioid Switching Alternatives Among Patch Formula. Anesth Analg. 2022;134(5):1082-1093. doi:10.1213/ANE.0000000000005954(IF=5.7)
18.Groemer TW, Triller A, Zeilhofer HU, Becker K, Eulenburg V, Becker CM. Nociception in the Glycine Receptor Deficient Mutant Mouse Spastic. Front Mol Neurosci. 2022;15:832490. Published 2022 Apr 25. doi:10.3389/fnmol.2022.832490(IF=4.8)
19.Poznański P, Lesniak A, Bujalska-Zadrozny M, Strzemecka J, Sacharczuk M. Bidirectional selection for high and low stress-induced analgesia affects G-protein activity. Neuropharmacology. 2019;144:37-42. doi:10.1016/j.neuropharm.2018.10.014(IF=4.7)
方法学文献:
F.E. D’mour & D.L. Smith: "." J. Pharmacol. Exp. Therap. 72: 74-79, 1941.
您想了解更多详细资料吗?
请与登录九游会联系:
TEL:,
QQ:
微信:yuyanbio
Mail:yuyanbio@126.com
欢迎您的咨询!